1. 二分查找(非递归)
代码实现
public class BinarySearchNoRecursion {
public static void main(String[] args) {
int[] arr = {1, 23, 46, 413, 880, 999};
int index = binarySearch(arr, 999);
System.out.println(index);
}
/**
* 二分查找非递归实现
*
* @param arr 待查找的数组 arr升序排序
* @param target 目标数
* @return 返回对应下标 否则返回-1
*/
public static int binarySearch(int[] arr, int target) {
int left = 0;
int right = arr.length - 1;
while (left <= right) {
int mid = (left + right) / 2;
if (arr[mid] == target) {
return mid;
} else if (arr[mid] > target) {
right = mid - 1;
} else {
left = mid + 1;
}
}
return -1;
}
}
2. 分治算法(汉诺塔)
代码实现
public class HanoiTower {
public static void main(String[] args) {
hanoiTower(5,'A','B','C');
}
public static void hanoiTower(int num,char a,char b, char c){
if (num==1){
System.out.println("第1个盘从 "+a+"->"+c);
} else {
//n>=2 把所有的盘总是看成两个盘:1.下边的一个盘,上面的所有盘
//1.最上面的所有盘A->B
hanoiTower(num-1,a,c,b);
//2.最下面的盘A->C
System.out.println("第"+num+"个盘从 "+a+"->"+c);
//3.把B塔的所有盘从B->C 移动过程使用到a塔
hanoiTower(num-1,b,a,c);
}
}
}
3. 动态规划算法
动态规划(Dynamic Programming)算法的核心思想是:将大问题划分为小问题进行解决,从而一步步获取最优解的处理算法
动态规划算法与分治算法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。
与分治法不同的是,适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的。 ( 即下一个子阶段的求解是建立在上一个子阶段的解的基础上,进行进一步的求解 )
动态规划可以通过填表的方式来逐步推进,得到最优解.
物品 | 重量 | 价格 |
---|---|---|
吉他(G) | 1 | 1500 |
音响(S) | 4 | 3000 |
电脑(L) | 3 | 2000 |
代码实现
public class KnapsackProblem {
public static void main(String[] args) {
int[] w = {1, 4, 3};
int[] val = {1500, 3000, 2000};
int m = 4;
int n = val.length;
//最大价值
int[][] v = new int[n + 1][m + 1];
//商品放入情况
int[][] path = new int[n + 1][m + 1];
//初始化第一行和列
for (int i = 0; i < v.length; i++) {
v[i][0] = 0;
}
for (int i = 0; i < v[0].length; i++) {
v[0][i] = 0;
}
//动态规划处理
for (int i = 1; i < v.length; i++) {
for (int j = 1; j < v[i].length; j++) {
//公式
if (w[i - 1] > j) {
v[i][j] = v[i - 1][j];
} else {
// v[i][j] = Math.max(v[i-1][j],val[i-1]+v[i-1][j-w[i-1]]);
// 记录商品放入情况
if (v[i - 1][j] < val[i - 1] + v[i - 1][j - w[i - 1]]) {
v[i][j] = val[i - 1] + v[i - 1][j - w[i - 1]];
path[i][j] = 1;
} else {
v[i][j] = v[i - 1][j];
}
}
}
}
//输出
for (int i = 0; i < v.length; i++) {
for (int j = 0; j < v[i].length; j++) {
System.out.print(v[i][j] + " ");
}
System.out.println(
);
}
int i = path.length-1; //行的最大下标
int j = path[0].length-1; //列的最大下标
while (i>0&&j>0){ //从最后遍历
if (path[i][j]==1){
System.out.printf("第%d个商品放入到背包\n",i);
j-=w[i-1]; // 剩余的容量
}
i--;
}
}
}
运行结果
0 0 0 0 0
0 1500 1500 1500 1500
0 1500 1500 1500 3000
0 1500 1500 2000 3500
第3个商品放入到背包
第1个商品放入到背包
4. KMP算法
KMP是一个解决模式串在文本串是否出现过,如果出现过,最早出现的位置的经典算法
Knuth-Morris-Pratt 字符串查找算法,简称为 “KMP算法”,常用于在一个文本串S内查找一个模式串P 的出现位置,这个算法由Donald Knuth、Vaughan Pratt、James H. Morris三人于1977年联合发表,故取这3人的姓氏命名此算法.
KMP方法算法就利用之前判断过信息,通过一个next数组,保存模式串中前后最长公共子序列的长度,每次回溯时,通过next数组找到,前面匹配过的位置,省去了大量的计算时间
参考资料:https://www.cnblogs.com/ZuoAndFutureGirl/p/9028287.html
字符串匹配问题
代码实现
public class ViolenceMatch {
public static void main(String[] args) {
String str1 = "少司啊命你少少打司命少司命";
String str2 = "少司命";
int i = violenceMatch(str1, str2);
System.out.println(i);
}
//暴力算法
public static int violenceMatch(String str1, String str2) {
char[] s1 = str1.toCharArray();
char[] s2 = str2.toCharArray();
int s1Len = s1.length;
int s2Len = s2.length;
int i = 0;
int j = 0;
while (i < s1Len && j < s2Len) {
if (s1[i] == s2[j]) {
i++;
j++;
} else {
i = i - (j - 1);
j = 0;
}
}
if (j == s2Len) {
return i - j;
} else {
return -1;
}
}
//KMP算法
/**
* @param str1 源字符串
* @param str2 子串
* @param next 子串对应的部分匹配表
* @return 返回匹配的位置 否则返回-1
*/
public static int kmpSearch(String str1, String str2, int[] next) {
for (int i = 0, j = 0; i < str1.length(); i++) {
while (j > 0 && str1.charAt(i) != str2.charAt(j)) {
j = next[j - 1];
}
if (str1.charAt(i) == str2.charAt(j)) {
j++;
}
if (j == str2.length()) { //找到了
return i - j + 1;
}
}
return -1;
}
//获取到一个字符串的部分匹配值表
public static int[] kmpNext(String dest) {
int[] next = new int[dest.length()];
next[0] = 0;
for (int i = 1, j = 0; i < dest.length(); i++) {
//kmp算法核心点
while (j > 0 && dest.charAt(i) != dest.charAt(j)) {
j = next[j - 1];
}
if (dest.charAt(i) == dest.charAt(j)) {
j++;
}
next[i] = j;
}
return next;
}
}
5. 贪心算法
- 贪婪算法(贪心算法)是指在对问题进行求解时,在每一步选择中都采取最好或者最优(即最有利)的选择,从而希望能够导致结果是最好或者最优的算法
- 贪婪算法所得到的结果不一定是最优的结果(有时候会是最优解),但是都是相对近似(接近)最优解的结果
应用场景-集合覆盖问题
假设存在下面需要付费的广播台,以及广播台信号可以覆盖的地区。 如何选择最少的广播台,让所有的地区都可以接收到信号?
广播台 | 覆盖地区 |
---|---|
K1 | “北京”, “上海”, “天津” |
K2 | “广州”, “北京”, “深圳” |
K3 | “成都”, “上海”, “杭州” |
K4 | “上海”, “天津” |
K5 | “杭州”, “大连” |
遍历所有的广播电台, 找到一个覆盖了最多未覆盖的地区的电台(此电台可能包含一些已覆盖的地区,但没有关系)
将这个电台加入到一个集合中(比如ArrayList), 想办法把该电台覆盖的地区在下次比较时去掉。
重复第1步直到覆盖了全部的地区
代码实现
import java.util.ArrayList;
import java.util.HashMap;
import java.util.HashSet;
public class GreedyAlgorithm {
public static void main(String[] args) {
HashMap<String, HashSet<String>> broadcasts = new HashMap<String, HashSet<String>>();
HashSet<String> hashSet1 = new HashSet<>();
hashSet1.add("北京");
hashSet1.add("上海");
hashSet1.add("天津");
HashSet<String> hashSet2 = new HashSet<>();
hashSet2.add("广州");
hashSet2.add("北京");
hashSet2.add("深圳");
HashSet<String> hashSet3 = new HashSet<>();
hashSet3.add("成都");
hashSet3.add("杭州");
hashSet3.add("上海");
HashSet<String> hashSet4 = new HashSet<>();
hashSet4.add("天津");
hashSet4.add("上海");
HashSet<String> hashSet5 = new HashSet<>();
hashSet5.add("大连");
hashSet5.add("杭州");
broadcasts.put("k1", hashSet1);
broadcasts.put("k2", hashSet2);
broadcasts.put("k3", hashSet3);
broadcasts.put("k4", hashSet4);
broadcasts.put("k5", hashSet5);
//存放所有的地区
HashSet<String> allArea = new HashSet<String>();
allArea.add("北京");
allArea.add("上海");
allArea.add("深圳");
allArea.add("杭州");
allArea.add("广州");
allArea.add("天津");
allArea.add("成都");
allArea.add("大连");
//存放选择的电台的集合
ArrayList<String> selects = new ArrayList<String>();
//临时集合,存放遍历过程中的电台覆盖的地区和当前还没有覆盖的地区的交集
HashSet<String> tempSet = new HashSet<String>();
//保存在一次遍历中能够覆盖最大未覆盖的地区对应的电台key 如果maxKey不为null,则加入到selects
String maxKey = null;
while (allArea.size() != 0) {
maxKey = null;
for (String key : broadcasts.keySet()) {
tempSet.clear();
HashSet<String> areas = broadcasts.get(key);
tempSet.addAll(areas);
//取tempSet 和 areas 的交集 赋给 tempSet
tempSet.retainAll(allArea);
//如果当亲这个集合包含未覆盖地区的数量,比maxKey指向的集合地区还多,就需要重置maxKey 这里体现贪心算法的特点
if (tempSet.size() > 0 && (maxKey == null || tempSet.size() > broadcasts.get(maxKey).size())) {
maxKey = key;
}
}
if (maxKey != null) {
selects.add(maxKey);
//将maxkey指向的广播电台重allArea中去除掉
allArea.removeAll(broadcasts.get(maxKey));
}
}
System.out.println("得到的选择结果" + selects);
}
}
6. 普利姆算法
- 普利姆(Prim)算法求最小生成树,也就是在包含n个顶点的连通图中,找出只有(n-1)条边包含所有n个顶点的连通子图,也就是所谓的极小连通子图
各个村庄的距离用边线表示(权) ,比如 A – B 距离 5公里.问:如何修路保证各个村庄都能连通,并且总的修建公路总里程最短?
代码演示
package com.ssm.tenAlgorithms;
import java.util.Arrays;
public class PrimAlgorithm {
public static void main(String[] args) {
char[] data = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
int verxs = data.length;
int[][] weight = {
{10000, 5, 7, 10000, 10000, 10000, 2},
{5, 10000, 10000, 9, 10000, 10000, 9},
{7, 10000, 10000, 10000, 8, 10000, 10000},
{10000, 9, 10000, 10000, 10000, 4, 10000},
{10000, 10000, 8, 10000, 10000, 5, 4},
{10000, 10000, 10000, 4, 5, 10000, 6},
{2, 3, 10000, 10000, 4, 6, 10000},
};
MGraph graph = new MGraph(verxs);
MinTree minTree = new MinTree();
minTree.createGraph(graph, verxs, data, weight);
minTree.showGraph(graph);
minTree.prim(graph,0);
}
}
//创建最小生成树
class MinTree {
public void createGraph(MGraph graph, int verxs, char[] data, int[][] weight) {
int i, j;
for (i = 0; i < verxs; i++) {
graph.data[i] = data[i];
for (j = 0; j < verxs; j++) {
graph.weight[i][j] = weight[i][j];
}
}
}
//显示图的邻接矩阵
public void showGraph(MGraph graph) {
for (int[] link : graph.weight) {
System.out.println(Arrays.toString(link));
}
}
//prim算法,生成最小生成树
public void prim(MGraph graph, int v) {
// visited [] 标记顶点是否被访问
int[] visited = new int[graph.verxs];
visited[v] = 1;
// h1,h2记录两个顶点的下标
int h1 = -1;
int h2 = -1;
int minWeight = 10000;
for (int k = 1; k < graph.verxs; k++) {
for (int i = 0; i < graph.verxs; i++) { //i 表示被访问过的结点
for (int j = 0; j < graph.verxs; j++) { //j 表示未被访问过的结点
if (visited[i]==1&&visited[j]==0&&graph.weight[i][j]<minWeight){
//找到权值最小的边
minWeight = graph.weight[i][j];
h1=i;
h2=j;
}
}
}
System.out.println("边<"+graph.data[h1]+","+graph.data[h2]+">权值:"+minWeight);
visited[h2]=1;
minWeight=10000;
}
}
}
class MGraph {
int verxs; //图的节点的个数
char[] data; //存放节点的个数
int[][] weight; //存放边,就是我们的邻接矩阵
public MGraph(int verxs) {
this.verxs = verxs;
data = new char[verxs];
weight = new int[verxs][verxs];
}
}
运行结果
边<A,G>权值:2
边<G,B>权值:3
边<G,E>权值:4
边<E,F>权值:5
边<F,D>权值:4
边<A,C>权值:7
7.克鲁斯卡尔算法
克鲁斯卡尔(Kruskal)算法,是用来求加权连通图的最小生成树的算法。
基本思想:按照权值从小到大的顺序选择n-1条边,并保证这n-1条边不构成回路
具体做法:首先构造一个只含n个顶点的森林,然后依权值从小到大从连通网中选择边加入到森林中,并使森林中不产生回路,直至森林变成一棵树为止
import java.util.Arrays;
public class KruskalCase {
private int edgeNum; //边的个数
private char[] vertexs; //顶点数组
private int[][] matrix; //邻接矩阵
//使用 INF 表示两个顶点不能连通
private static final int INF = Integer.MAX_VALUE;
public static void main(String[] args) {
char[] vertexs = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
//克鲁斯卡尔算法的邻接矩阵
int matrix[][] = {
/*A*//*B*//*C*//*D*//*E*//*F*//*G*/
/*A*/ { 0, 12, INF, INF, INF, 16, 14},
/*B*/ { 12, 0, 10, INF, INF, 7, INF},
/*C*/ { INF, 10, 0, 3, 5, 6, INF},
/*D*/ { INF, INF, 3, 0, 4, INF, INF},
/*E*/ { INF, INF, 5, 4, 0, 2, 8},
/*F*/ { 16, 7, 6, INF, 2, 0, 9},
/*G*/ { 14, INF, INF, INF, 8, 9, 0}};
//大家可以在去测试其它的邻接矩阵,结果都可以得到最小生成树.
//创建KruskalCase 对象实例
KruskalCase kruskalCase = new KruskalCase(vertexs, matrix);
//输出构建的
kruskalCase.print();
kruskalCase.kruskal();
}
//构造器
public KruskalCase(char[] vertexs, int[][] matrix) {
//初始化顶点数和边的个数
int vlen = vertexs.length;
//初始化顶点, 复制拷贝的方式
this.vertexs = new char[vlen];
for(int i = 0; i < vertexs.length; i++) {
this.vertexs[i] = vertexs[i];
}
//初始化边, 使用的是复制拷贝的方式
this.matrix = new int[vlen][vlen];
for(int i = 0; i < vlen; i++) {
for(int j= 0; j < vlen; j++) {
this.matrix[i][j] = matrix[i][j];
}
}
//统计边的条数
for(int i =0; i < vlen; i++) {
for(int j = i+1; j < vlen; j++) {
if(this.matrix[i][j] != INF) {
edgeNum++;
}
}
}
}
public void kruskal() {
int index = 0; //表示最后结果数组的索引
int[] ends = new int[edgeNum]; //用于保存"已有最小生成树" 中的每个顶点在最小生成树中的终点
//创建结果数组, 保存最后的最小生成树
EData[] rets = new EData[edgeNum];
//获取图中 所有的边的集合 , 一共有12边
EData[] edges = getEdges();
System.out.println("图的边的集合=" + Arrays.toString(edges) + " 共"+ edges.length); //12
//按照边的权值大小进行排序(从小到大)
sortEdges(edges);
//遍历edges 数组,将边添加到最小生成树中时,判断是准备加入的边否形成了回路,如果没有,就加入 rets, 否则不能加入
for(int i=0; i < edgeNum; i++) {
//获取到第i条边的第一个顶点(起点)
int p1 = getPosition(edges[i].start); //p1=4
//获取到第i条边的第2个顶点
int p2 = getPosition(edges[i].end); //p2 = 5
//获取p1这个顶点在已有最小生成树中的终点
int m = getEnd(ends, p1); //m = 4
//获取p2这个顶点在已有最小生成树中的终点
int n = getEnd(ends, p2); // n = 5
//是否构成回路
if(m != n) { //没有构成回路
ends[m] = n; // 设置m 在"已有最小生成树"中的终点 <E,F> [0,0,0,0,5,0,0,0,0,0,0,0]
rets[index++] = edges[i]; //有一条边加入到rets数组
}
}
//<E,F> <C,D> <D,E> <B,F> <E,G> <A,B>。
//统计并打印 "最小生成树", 输出 rets
System.out.println("最小生成树为");
for(int i = 0; i < index; i++) {
System.out.println(rets[i]);
}
}
//打印邻接矩阵
public void print() {
System.out.println("邻接矩阵为: \n");
for(int i = 0; i < vertexs.length; i++) {
for(int j=0; j < vertexs.length; j++) {
System.out.printf("%12d", matrix[i][j]);
}
System.out.println();//换行
}
}
/**
* 功能:对边进行排序处理, 冒泡排序
* @param edges 边的集合
*/
private void sortEdges(EData[] edges) {
for(int i = 0; i < edges.length - 1; i++) {
for(int j = 0; j < edges.length - 1 - i; j++) {
if(edges[j].weight > edges[j+1].weight) {//交换
EData tmp = edges[j];
edges[j] = edges[j+1];
edges[j+1] = tmp;
}
}
}
}
/**
*
* @param ch 顶点的值,比如'A','B'
* @return 返回ch顶点对应的下标,如果找不到,返回-1
*/
private int getPosition(char ch) {
for(int i = 0; i < vertexs.length; i++) {
if(vertexs[i] == ch) {//找到
return i;
}
}
//找不到,返回-1
return -1;
}
/**
* 功能: 获取图中边,放到EData[] 数组中,后面我们需要遍历该数组
* 是通过matrix 邻接矩阵来获取
* EData[] 形式 [['A','B', 12], ['B','F',7], .....]
* @return
*/
private EData[] getEdges() {
int index = 0;
EData[] edges = new EData[edgeNum];
for(int i = 0; i < vertexs.length; i++) {
for(int j=i+1; j <vertexs.length; j++) {
if(matrix[i][j] != INF) {
edges[index++] = new EData(vertexs[i], vertexs[j], matrix[i][j]);
}
}
}
return edges;
}
/**
* 功能: 获取下标为i的顶点的终点(), 用于后面判断两个顶点的终点是否相同
* @param ends : 数组就是记录了各个顶点对应的终点是哪个,ends 数组是在遍历过程中,逐步形成
* @param i : 表示传入的顶点对应的下标
* @return 返回的就是 下标为i的这个顶点对应的终点的下标, 一会回头还有来理解
*/
private int getEnd(int[] ends, int i) { // i = 4 [0,0,0,0,5,0,0,0,0,0,0,0]
while(ends[i] != 0) {
i = ends[i];
}
return i;
}
}
//创建一个类EData ,它的对象实例就表示一条边
class EData {
char start; //边的一个点
char end; //边的另外一个点
int weight; //边的权值
//构造器
public EData(char start, char end, int weight) {
this.start = start;
this.end = end;
this.weight = weight;
}
//重写toString, 便于输出边信息
@Override
public String toString() {
return "EData [<" + start + ", " + end + ">= " + weight + "]";
}
}
克鲁斯卡尔算法和普利姆算法的区别:
- 普利姆:以点为核心,两点之间的权值从小到大找,找到的最小的连上即可。(不能断开)
- 克鲁斯卡尔:以边为核心,边的权值从小到大找,即使两个线条不相连也先连上,然后最后再连在一起(可以断开)
8.迪杰斯特拉算法
迪杰斯特拉(Dijkstra)算法是典型最短路径算法,用于计算一个结点到其他结点的最短路径。 它的主要特点是以起始点为中心向外层层扩展(广度优先搜索思想),直到扩展到终点为止
战争时期,胜利乡有7个村庄(A, B, C, D, E, F, G) ,现在有六个邮差,从G点出发,需要分别把邮件分别送到 A, B, C , D, E, F 六个村庄
各个村庄的距离用边线表示(权) ,比如 A – B 距离 5公里
问:如何计算出G村庄到 其它各个村庄的最短距离?
如果从其它点出发到各个点的最短距离又是多少?
package com.ssm.tenAlgorithms;
import java.util.Arrays;
public class DijkstraAlgorithm {
public static void main(String[] args) {
char[] vertex = { 'A', 'B', 'C', 'D', 'E', 'F', 'G' };
//邻接矩阵
int[][] matrix = new int[vertex.length][vertex.length];
final int N = 65535;// 表示不可以连接
matrix[0]=new int[]{N,5,7,N,N,N,2};
matrix[1]=new int[]{5,N,N,9,N,N,3};
matrix[2]=new int[]{7,N,N,N,8,N,N};
matrix[3]=new int[]{N,9,N,N,N,4,N};
matrix[4]=new int[]{N,N,8,N,N,5,4};
matrix[5]=new int[]{N,N,N,4,5,N,6};
matrix[6]=new int[]{2,3,N,N,4,6,N};
//创建 Graph对象
Graph graph = new Graph(vertex, matrix);
//测试, 看看图的邻接矩阵是否ok
graph.showGraph();
//测试迪杰斯特拉算法
graph.dsj(2);//C
graph.showDijkstra();
}
}
class Graph {
private char[] vertex; // 顶点数组
private int[][] matrix; // 邻接矩阵
private VisitedVertex vv; //已经访问的顶点的集合
// 构造器
public Graph(char[] vertex, int[][] matrix) {
this.vertex = vertex;
this.matrix = matrix;
}
//显示结果
public void showDijkstra() {
vv.show();
}
// 显示图
public void showGraph() {
for (int[] link : matrix) {
System.out.println(Arrays.toString(link));
}
}
//迪杰斯特拉算法实现
/**
*
* @param index 表示出发顶点对应的下标
*/
public void dsj(int index) {
vv = new VisitedVertex(vertex.length, index);
update(index);//更新index顶点到周围顶点的距离和前驱顶点
for(int j = 1; j <vertex.length; j++) {
index = vv.updateArr();// 选择并返回新的访问顶点
update(index); // 更新index顶点到周围顶点的距离和前驱顶点
}
}
//更新index下标顶点到周围顶点的距离和周围顶点的前驱顶点,
private void update(int index) {
int len = 0;
//根据遍历我们的邻接矩阵的 matrix[index]行
for(int j = 0; j < matrix[index].length; j++) {
// len 含义是 : 出发顶点到index顶点的距离 + 从index顶点到j顶点的距离的和
len = vv.getDis(index) + matrix[index][j];
// 如果j顶点没有被访问过,并且 len 小于出发顶点到j顶点的距离,就需要更新
if(!vv.in(j) && len < vv.getDis(j)) {
vv.updatePre(j, index); //更新j顶点的前驱为index顶点
vv.updateDis(j, len); //更新出发顶点到j顶点的距离
}
}
}
}
// 已访问顶点集合
class VisitedVertex {
// 记录各个顶点是否访问过 1表示访问过,0未访问,会动态更新
public int[] already_arr;
// 每个下标对应的值为前一个顶点下标, 会动态更新
public int[] pre_visited;
// 记录出发顶点到其他所有顶点的距离,比如G为出发顶点,就会记录G到其它顶点的距离,会动态更新,求的最短距离就会存放到dis
public int[] dis;
//构造器
/**
*
* @param length :表示顶点的个数
* @param index: 出发顶点对应的下标, 比如G顶点,下标就是6
*/
public VisitedVertex(int length, int index) {
this.already_arr = new int[length];
this.pre_visited = new int[length];
this.dis = new int[length];
//初始化 dis数组
Arrays.fill(dis, 65535);
this.already_arr[index] = 1; //设置出发顶点被访问过
this.dis[index] = 0;//设置出发顶点的访问距离为0
}
/**
* 功能: 判断index顶点是否被访问过
* @param index
* @return 如果访问过,就返回true, 否则访问false
*/
public boolean in(int index) {
return already_arr[index] == 1;
}
/**
* 功能: 更新出发顶点到index顶点的距离
* @param index
* @param len
*/
public void updateDis(int index, int len) {
dis[index] = len;
}
/**
* 功能: 更新pre这个顶点的前驱顶点为index顶点
* @param pre
* @param index
*/
public void updatePre(int pre, int index) {
pre_visited[pre] = index;
}
/**
* 功能:返回出发顶点到index顶点的距离
* @param index
*/
public int getDis(int index) {
return dis[index];
}
/**
* 继续选择并返回新的访问顶点, 比如这里的G 完后,就是 A点作为新的访问顶点(注意不是出发顶点)
* @return
*/
public int updateArr() {
int min = 65535, index = 0;
for(int i = 0; i < already_arr.length; i++) {
if(already_arr[i] == 0 && dis[i] < min ) {
min = dis[i];
index = i;
}
}
//更新 index 顶点被访问过
already_arr[index] = 1;
return index;
}
//显示最后的结果
//即将三个数组的情况输出
public void show() {
System.out.println("==========================");
//输出already_arr
for(int i : already_arr) {
System.out.print(i + " ");
}
System.out.println();
//输出pre_visited
for(int i : pre_visited) {
System.out.print(i + " ");
}
System.out.println();
//输出dis
for(int i : dis) {
System.out.print(i + " ");
}
System.out.println();
//为了好看最后的最短距离,我们处理
char[] vertex = { 'A', 'B', 'C', 'D', 'E', 'F', 'G' };
int count = 0;
for (int i : dis) {
if (i != 65535) {
System.out.print(vertex[count] + "("+i+") ");
} else {
System.out.println("N ");
}
count++;
}
System.out.println();
}
}
9.弗洛伊德算法
- 和Dijkstra算法一样,弗洛伊德(Floyd)算法也是一种用于寻找给定的加权图中顶点间最短路径的算法。
package com.ssm.tenAlgorithms;
import java.util.Arrays;
public class FloydAlgorithm {
public static void main(String[] args) {
// 测试看看图是否创建成功
char[] vertex = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
//创建邻接矩阵
int[][] matrix = new int[vertex.length][vertex.length];
final int N = 65535;
matrix[0] = new int[]{0, 5, 7, N, N, N, 2};
matrix[1] = new int[]{5, 0, N, 9, N, N, 3};
matrix[2] = new int[]{7, N, 0, N, 8, N, N};
matrix[3] = new int[]{N, 9, N, 0, N, 4, N};
matrix[4] = new int[]{N, N, 8, N, 0, 5, 4};
matrix[5] = new int[]{N, N, N, 4, 5, 0, 6};
matrix[6] = new int[]{2, 3, N, N, 4, 6, 0};
//创建 Graph 对象
Graph graph = new Graph(vertex.length, matrix, vertex);
//调用弗洛伊德算法
graph.floyd();
graph.show();
}
// 创建图
static class Graph {
private char[] vertex; // 存放顶点的数组
private int[][] dis; // 保存,从各个顶点出发到其它顶点的距离,最后的结果,也是保留在该数组
private int[][] pre;// 保存到达目标顶点的前驱顶点
// 构造器
/**
* @param length 大小
* @param matrix 邻接矩阵
* @param vertex 顶点数组
*/
public Graph(int length, int[][] matrix, char[] vertex) {
this.vertex = vertex;
this.dis = matrix;
this.pre = new int[length][length];
// 对pre数组初始化, 注意存放的是前驱顶点的下标
for (int i = 0; i < length; i++) {
Arrays.fill(pre[i], i);
}
}
// 显示pre数组和dis数组
public void show() {
//为了显示便于阅读,我们优化一下输出
char[] vertex = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
for (int k = 0; k < dis.length; k++) {
// 先将pre数组输出的一行
for (int i = 0; i < dis.length; i++) {
System.out.print(vertex[pre[k][i]] + " ");
}
System.out.println();
// 输出dis数组的一行数据
for (int i = 0; i < dis.length; i++) {
System.out.print("(" + vertex[k] + "到" + vertex[i] + "的最短路径是" + dis[k][i] + ") ");
}
System.out.println();
System.out.println();
}
}
//弗洛伊德算法, 比较容易理解,而且容易实现
public void floyd() {
int len = 0; //变量保存距离
//对中间顶点遍历, k 就是中间顶点的下标 [A, B, C, D, E, F, G]
for (int k = 0; k < dis.length; k++) { //
//从i顶点开始出发 [A, B, C, D, E, F, G]
for (int i = 0; i < dis.length; i++) {
//到达j顶点 // [A, B, C, D, E, F, G]
for (int j = 0; j < dis.length; j++) {
len = dis[i][k] + dis[k][j];// => 求出从i 顶点出发,经过 k中间顶点,到达 j 顶点距离
if (len < dis[i][j]) {//如果len小于 dis[i][j]
dis[i][j] = len;//更新距离
pre[i][j] = pre[k][j];//更新前驱顶点
}
}
}
}
}
}
}
弗洛伊德算法和迪杰斯特拉算法不同之处:
- 迪杰斯特拉算法通过选定的被访问顶点,求出从出发访问顶点到其他顶点的最短路径;
- 弗洛伊德算法中每一个顶点都是出发访问点,所以需要将每一个顶点看做被访问顶点,求出从每一个顶点到其他顶点的最短路径。
10.骑士周游回溯算法
马踏棋盘算法也被称为骑士周游问题
将马随机放在国际象棋的8×8棋盘Board[0~7][0~7]的某个方格中,马按走棋规则(马走日字)进行移动。要求每个方格只进入一次,走遍棋盘上全部64个方格
马踏棋盘问题(骑士周游问题)实际上是图的深度优先搜索(DFS)的应用。
package com.ssm.tenAlgorithms;
import java.awt.Point;
import java.util.ArrayList;
import java.util.Comparator;
public class HorseChessboard {
private static int X; // 棋盘的列数
private static int Y; // 棋盘的行数
//创建一个数组,标记棋盘的各个位置是否被访问过
private static boolean visited[];
//使用一个属性,标记是否棋盘的所有位置都被访问
private static boolean finished; // 如果为true,表示成功
public static void main(String[] args) {
System.out.println("骑士周游算法,开始运行~~");
//测试骑士周游算法是否正确
X = 8;
Y = 8;
int row = 1; //马儿初始位置的行,从1开始编号
int column = 1; //马儿初始位置的列,从1开始编号
//创建棋盘
int[][] chessboard = new int[X][Y];
visited = new boolean[X * Y];//初始值都是false
//测试一下耗时
long start = System.currentTimeMillis();
traversalChessboard(chessboard, row - 1, column - 1, 1);
long end = System.currentTimeMillis();
System.out.println("共耗时: " + (end - start) + " 毫秒");
//输出棋盘的最后情况
for(int[] rows : chessboard) {
for(int step: rows) {
System.out.print(step + "\t");
}
System.out.println();
}
}
/**
* 完成骑士周游问题的算法
* @param chessboard 棋盘
* @param row 马儿当前的位置的行 从0开始
* @param column 马儿当前的位置的列 从0开始
* @param step 是第几步 ,初始位置就是第1步
*/
public static void traversalChessboard(int[][] chessboard, int row, int column, int step) {
chessboard[row][column] = step;
//row = 4 X = 8 column = 4 = 4 * 8 + 4 = 36
visited[row * X + column] = true; //标记该位置已经访问
//获取当前位置可以走的下一个位置的集合
ArrayList<Point> ps = next(new Point(column, row));
//对ps进行排序,排序的规则就是对ps的所有的Point对象的下一步的位置的数目,进行非递减排序
sort(ps);
//遍历 ps
while(!ps.isEmpty()) {
Point p = ps.remove(0);//取出下一个可以走的位置
//判断该点是否已经访问过
if(!visited[p.y * X + p.x]) {//说明还没有访问过
traversalChessboard(chessboard, p.y, p.x, step + 1);
}
}
//判断马儿是否完成了任务,使用 step 和应该走的步数比较 ,
//如果没有达到数量,则表示没有完成任务,将整个棋盘置0
//说明: step < X * Y 成立的情况有两种
//1. 棋盘到目前位置,仍然没有走完
//2. 棋盘处于一个回溯过程
if(step < X * Y && !finished ) {
chessboard[row][column] = 0;
visited[row * X + column] = false;
} else {
finished = true;
}
}
/**
* 功能: 根据当前位置(Point对象),计算马儿还能走哪些位置(Point),并放入到一个集合中(ArrayList), 最多有8个位置
* @param curPoint
* @return
*/
public static ArrayList<Point> next(Point curPoint) {
//创建一个ArrayList
ArrayList<Point> ps = new ArrayList<Point>();
//创建一个Point
Point p1 = new Point();
//表示马儿可以走5这个位置
if((p1.x = curPoint.x - 2) >= 0 && (p1.y = curPoint.y -1) >= 0) {
ps.add(new Point(p1));
}
//判断马儿可以走6这个位置
if((p1.x = curPoint.x - 1) >=0 && (p1.y=curPoint.y-2)>=0) {
ps.add(new Point(p1));
}
//判断马儿可以走7这个位置
if ((p1.x = curPoint.x + 1) < X && (p1.y = curPoint.y - 2) >= 0) {
ps.add(new Point(p1));
}
//判断马儿可以走0这个位置
if ((p1.x = curPoint.x + 2) < X && (p1.y = curPoint.y - 1) >= 0) {
ps.add(new Point(p1));
}
//判断马儿可以走1这个位置
if ((p1.x = curPoint.x + 2) < X && (p1.y = curPoint.y + 1) < Y) {
ps.add(new Point(p1));
}
//判断马儿可以走2这个位置
if ((p1.x = curPoint.x + 1) < X && (p1.y = curPoint.y + 2) < Y) {
ps.add(new Point(p1));
}
//判断马儿可以走3这个位置
if ((p1.x = curPoint.x - 1) >= 0 && (p1.y = curPoint.y + 2) < Y) {
ps.add(new Point(p1));
}
//判断马儿可以走4这个位置
if ((p1.x = curPoint.x - 2) >= 0 && (p1.y = curPoint.y + 1) < Y) {
ps.add(new Point(p1));
}
return ps;
}
//根据当前这个一步的所有的下一步的选择位置,进行非递减排序, 减少回溯的次数
public static void sort(ArrayList<Point> ps) {
ps.sort(new Comparator<Point>() {
@Override
public int compare(Point o1, Point o2) {
// TODO Auto-generated method stub
//获取到o1的下一步的所有位置个数
int count1 = next(o1).size();
//获取到o2的下一步的所有位置个数
int count2 = next(o2).size();
if(count1 < count2) {
return -1;
} else if (count1 == count2) {
return 0;
} else {
return 1;
}
}
});
}
}